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LETTER TO THE EDITOR

Asymptotic behaviour in learning from stochastic
examples: one-stepRSB calculation of the learning curve

Tatsuya Uezu† and Yoshiyuki Kabashima‡
Department of Physics, Nara Women’s University, Nara 630, Japan

Received 30 October 1995

Abstract. The asymptotic learning curve of aN -dimensional stochastic learning model is
calculated in the statistical mechanical framework. For theN = 1 case, Kabashima and
Shinomoto (1992) gave a power law with exponent2

3 . However, this is inconsistent with
the RS solution with the exponent12 obtained by Gÿorgyi and Tishby (1990). We show that the
one-stepRSB solution is consistent with Kabashima and Shinomoto’s result up to a logarithmic
correction.

In recent years, the problem of learning from examples has been an attractive topic in
statistical mechanics. By using the replica method, learning curves of generalization error,
which is the probability of a false prediction on a novel example, were calculated for various
types of learning machines (in detail, see Watkinet al 1993). These studies revealed a rich
behaviour of learning curvesdependingon the architecture of machines, when the number
of examplesP is small relative to the number of adjustable machine parametersN (Seung
et al 1992, Barkaiet al 1992, Hanselet al 1992). However, the most surprising result is the
universality of the asymptote of learning curves whenP/N is large (Gÿorgyi and Tishby
1990, Opper and Haussler 1991). For the cases that the machine parameters are continuous
and the target rules are deterministic and realizable by the students, the generalization error
ε obeys the universal scaling relation

ε ∼ N/P (1)

independentof the architecture of machines. It should be remarked that the relation (1) is
also derived by other methods than the replica trick, such as the annealed approximation
(Levin et al 1989), the uniform convergence technique in computational learning theory
(Blumer et al 1986, Baum and Haussler 1989) and the asymptotic analysis in statistics
(Amari 1993).

However, it was pointed out by several authors that the scaling relation (1) does not
yet hold when the target rule is unrealizable or seems stochastic to the learner (Haussleret
al 1988, Gÿorgyi and Tishby 1990, Seunget al 1992, Amariet al 1992, Kabashima and
Shinomoto 1992). Among these studies, the one-dimensional binary choice problem studied
by Kabashima and Shinomoto (1992) is striking because of its simplicity. The target rule
considered in their model is a stochastic relation between real number inputx ∈ [0, 1] and
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binary outputy ∈ {−1, +1}, p(y|x). The functionp(+1|x) = 1 − p(−1|x) is assumed to
be increasing and differentiable with respect tox, and assumed to have a pointθo ∈ [0, 1]
satisfying the conditionp(+1|θo) = p(−1|θo) = 1

2. Under these assumptions, the strategy
returningy = sign(x − θo) for an inputx minimizes the generalization error. The learner’s
task is, therefore, to estimate the boundaryθo from a given set of examples. The minimum-
error algorithm which minimizes the training error, i.e. the number of false predictions on
training examples, is a natural learning strategy. By using an analogy between the fluctuation
of the training error and the motion of a random walk, Kabashima and Shinomoto found
that the minimum-error algorithm gives a non-trivial power law

ε − εmin ∼ P −2/3 (2)

where εmin is the minimum value of the generalization error obtained by the optimal
boundaryθo. A similar result was also discovered in the field of statistics (Kim and Pollard
1990).

The learning model studied by Györgyi and Tishby (1990) corresponds to a higher
dimensional version of the above problem. In their model, the target rule is a perceptron
with the weightw0 whose inputs are corrupted by noise. For anN -dimensional vectorx,
the rule returnsy = sign[w0 · (x + η)] whereη is the Gaussian noise with zero mean. The
learner estimates the weightw0 from a given set of input–output pairs in order to acquire
a good generalization ability. It is an interesting question whether the power law (2) also
holds in such anN -dimensional systems. However, one cannot directly use the same
analogy as Kabashima and Shinomoto did for a higher dimensional model because their
analysis depends strongly on the one-dimensional nature of the model. Györgyi and Tishby
calculated the learning curve of this problem in the framework of statistical mechanics. The
result obtained under theRS ansatz, however, was

ε − εmin ∼ (N/P )1/2 (3)

which, with N = 1, is different from equation (2). ThisRS solution was found to be
thermodynamically unstable. Nevertheless, they conjectured that it is a good approximation
because it is identical with that of the worst case analysis by Haussleret al (1988). The
discrepancy between equations (2) and (3) is still unresolved.

The purpose of this paper is to resolve this discrepancy. In the following, we consider a
stochastic relation betweenN -dimensional input vectorx and binary outputy ∈ {−1, +1}
as a generalized version of the problems treated by Györgyi–Tishby and Kabashima–
Shinomoto. In order to perform a more precise analysis, we calculate the asymptotic
behaviour of the learning curve under the one-stepRSB ansatz in the statistical mechanical
framework.

The main result of this paper is the following. With the one-stepRSB calculation, it is
found that the learning curve of the minimum-error algorithm scales as

ε − εmin ∼ (N/P )2/3 (4)

up to a logarithmic correction, when the stochastic target relation has no singularity over
the input space. Thus, it is conjectured that the power law with the exponent2

3 is universal
irrespective of the dimensionality of the modelN .

Hereafter, we assume that an arbitraryN -dimensional vectora is normalized as
|a| = √

N . We consider a stochastic target relation betweenN -dimensional input vector
x and binary outputy ∈ {−1, +1} which is represented by a conditional probability
p(y|x) = p(y ×w0 ·x/

√
N), wherew0 is a fixed, unknownN -dimensional weight vector.

We assume that the functionp(u) is increasing and differentiable with respect tou. Under
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this assumption, the predictiony = sign[w0 · x/
√

N ] minimizes the generalization error.
Hence, the learner’s task is to estimate the weightw0 from a given set of examples.

When inputs of a perceptron are corrupted by noise, the conditional probability that
the outputsy = ±1 are generated becomes a smooth function of the inner product of the
weight and the input. Therefore, the present model includes Györgyi and Tishby’s learning
model. Another typical noise is the output noise studied by Opper and Haussler (1991).
In their model, it is assumed that the sign of each output is reversed with a probability
0 < λ < 1

2. Such a learning model can also be represented by the present model with a
singular functionp(u) = λ + (1 − 2λ)2(u). However, we concentrate on the former type
of stochastic relation in this paper because another consideration is required for the latter
type of problems (Uezuet al 1995).

By using the minimum-error algorithm, the learner estimates the weightw0 from a
given set ofP examplesξP = {(x1, y1), (x2, y2), . . . , (xP , yP )} which are independently
and uniformly drawn fromN -dimensional sphere of radius

√
N centred at the origin and the

conditional distributionp(y|x). For a given realization of exampleξP , the minimum-error
algorithm minimizes the training error, i.e. the number of false predictions

E(w|ξP ) =
P∑

µ=1

2

(
−yµ

w · x√
N

)
. (5)

The performance of the learning is evaluated by the generalization errorε, which is
the probability of false prediction on a novel example. Due to the assumption that the
distribution of inputs is uniform on theN -dimensional sphere,ε becomes a function of the
overlap between the optimal weightw0 and the estimatorw, R = w0 · w/N . One can
show this is given by

ε = 2
∫ +∞

−∞
Dt

∫ +∞

−∞
Dz p(

√
1 − Rz +

√
Rt)H

(√
R

1 − R
t

)
(6)

where Dx = dx exp[−x2/2]/
√

2π andH(x) = ∫ ∞
x

Dz. In particular, when1R = 1− R is
small, we obtain the relation

ε − εmin ∼ 2p′(0)√
2π

1R (7)

whereεmin = 2
∫ +∞
−∞ Dt p(t)[1 − 2(t)] is the minimum value of the generalization error

which is attained byR = 1.
From the energy defined by the equation (5), the partition function with the inverse

temperatureβ is given by

Z =
∫

dw δ(|w|2 − N) exp[−βE(w|ξP )]

=
∫

dw δ(|w|2 − N)

P∏
µ=1

[
e−β + (1 − e−β)2

(
yµ

w · xµ√
N

)]
. (8)

The averaged free energy can be calculated through the formula

〈〈f 〉〉ξP = −〈〈ln Z〉〉ξP

βN
= − 1

βN
lim
n→0

〈〈Zn〉〉ξP − 1

n
(9)

where〈〈· · ·〉〉ξP means the average over the quenched variablesξP . This becomes a function
of the order parametersqab = wa · wb/N , Ra = w0 · wa/N . The learning curve of
the minimum-error algorithm is obtained in the limitβ → ∞. In the asymptotic region
α = P/N 〉〉 1, we have to take the replica-symmetry breaking (RSB) into account in the
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evaluation of the equation (9) in the limitβ → ∞ (Györgyi and Tishby 1990, Bouten
1994). In the following, we investigate the solution within the one-stepRSB ansatz. The
one-stepRSB solution is defined by four order parametersq0, q1, m, andR (or R̃ = R2/q0).
The three parametersq0, q1, m specify the replica overlap functionq(x) asq(x) = q0 for
0 < x < m andq(x) = q1 for m < x < 1, while single parameterR specifies the overlap
between the optimal weight and a replica. In this framework, one can show that

〈〈ln Z〉〉ξP

βN
= ext{R̃,q0,q1,m}

{
2α

βm

∫ +∞

−∞
Dt �(R̃ : t) ln

[∫ +∞

−∞
Ds{4β(q1, q0 : s, t)}m

]
+m − 1

2βm
ln(1 − q1) + 1

2βm
ln[(1 − q1) + m(q1 − q0)]

+ q0(1 − R̃)

2β[(1 − q1) + m(q1 − q0)]

}
(10)

whereR̃ = R2/q0 and

�(R̃ : t) =
∫ +∞

−∞
Dz p(

√
1 − R̃z +

√
R̃t) (11)

4β(q1, q0 : s, t) =
∫ +∞

−∞
Dz[e−β + (1 − e−β)2(

√
1 − q1z + √

q1 − q0s + √
q0t)]

= e−β + (1 − e−β)H

(
−

√
q1 − q0s + √

q0t√
1 − q1

)
. (12)

In the limit β → ∞, a non-trivial result is obtained only whenq1 → 1 andm → 0
keeping bothw = βm and c = m/(1 − q1) finite. With this ansatz, the equation (10)
becomes

lim
β→∞

〈〈ln Z〉〉ξP

βN
= ext{R̃,q0,c,w}

{
2α

w

∫ +∞

−∞
Dt �(R̃ : t) ln 4̃(q0, c, w : t)

+ 1

2w
ln[1 + c(1 − q0)] + 1

2w

cq0(1 − R̃)

[1 + c(1 − q0)]

}
(13)

where

4̃(q0, c, w : t) =
∫ +∞

−∞
Dz 2̃(c, w :

√
1 − q0z + √

q0t)

= H

(
−

√
q0

1 − q0
t

)
+ e−wH

(√
q0

1 − q0
t +

√
2w

c(1 − q0)

)

+ e− cq0t2

2[1+c(1−q0)]

√
1 + c(1 − q0)

[
H

(
1√

1 + c(1 − q0)

√
q0

1 − q0
t

)
−H

(
1√

1 + c(1 − q0)

{√
q0

1 − q0
t + (1 + c(1 − q0))

√
2w

c(1 − q0)

})]
(14)

and

2̃(c, w : u) = 2(u) + e−w2

(
−u −

√
2w

c
) + e−cu2/2

[
2(−u) − 2

(−u −
√

2w

c

)]
. (15)

The only solution obtained numerically from the saddle point (SP) equations behaves as
R̃ → 1, q0 → 1, c → ∞, andw → 0 in the limit α → ∞. Further, the productc(1 − q0)

goes to infinity. In order to investigate how these convergences scale withα, we expand
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the right-hand side of the equation(13) with respect to the small variables1R̃ = 1 − R̃,
1q = 1 − q0, c−1, andw around the above limits and obtain

−α

[
εmin + p′(0)√

2π
(1R̃ + 1q) − w1q1/2

2
√

2π
− 2w1/2c−1/2

3
√

π
+ · · ·

]
+ 1

2w
ln[c1q] + 1R̃

2w1q
.

(16)

This gives the following SP equations:

α ∼ w−11q−1 (17)

α − αw1q−1/2 ∼ w−11q−1 − w−11q−21R̃ (18)

αw1/2c−3/2 ∼ w−1c−1 (19)

α1q1/2 + αw−1/2c−1/2 ∼ w−2 ln(c1q) + w−21q−11R̃ (20)

which imply the following scalings:

1R̃ ∼ (ln α)1/3α−2/3 (21)

1q ∼ (ln α)−2/3α−2/3 (22)

c ∼ (ln α)2α (23)

w ∼ (ln α)2/3α−1/3 . (24)

From these relations and the equation (7), we obtain the learning curve

ε − εmin ∼ (ln α)1/3α−2/3 ∼ [ln(P/N)]1/3(N/P )2/3 (25)

which is consistent with the equation (2) up to a logarithmic correction (see figure 1).

Figure 1. The learning curves for the functionp(u) = H(−u). The full and the broken curves
represent the one-stepRSB solution and theRS solution, respectively.

In summary, we calculated the asymptotic form of the learning curve of aN -dimensional
stochastic learning model in the statistical mechanical framework in order to resolve the
discrepancy between Kabashima and Shinomoto’s result obtained in a one-dimensional
system and Gÿorgyi and Tishby’s result obtained in a thermodynamic system. The
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asymptotic form was obtained with the one-stepRSB ansatz. It is consistent with Kabashima
and Shinomoto’s result forN = 1 up to a logarithmic correction. The discrepancy with
Györgyi and Tishby’s result shows that theRS calculation is insufficient†.

Finally, it is interesting to consider a singular functionp(u) = 1
2 + O(sign(u)|u|δ)

whereδ > 0 because this includes Györgyi and Tishby’s input noise model (δ = 1) and
Opper and Haussler’s output noise model (δ = 0). For δ > 0, it can be shown that one-
stepRSBcalculations give the log-modified power lawε − εmin ∼ [ln(P/N)]

1+δ
2(1+2δ) (N/P )

1+δ
1+2δ ,

althoughRScalculations give a pure power law with the exponent(1+δ)/(1+3δ). However,
for the caseδ = 0, both of theRS and the one-stepRSB solutions obey pure power laws
ε − εmin ∼ N/P although the two solutions have different coefficients (Uezuet al 1995).
Nevertheless, all the one-stepRSB solutions are consistent with the power laws obtainable
by Kabashima and Shinomoto’s analogy in the corresponding one-dimensional problems up
to logarithmic corrections. The details of these generalized cases will be reported elsewhere.

The authors especially thank N Nakamura, K Nokura and P Davis for helpful discussions
and advice.
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